Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Mol Cell Proteomics ; 17(4): 565-579, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29326176

RESUMO

The extracellular matrix protein collagen VII is part of the microenvironment of stratified epithelia and critical in organismal homeostasis. Mutations in the encoding gene COL7A1 lead to the skin disorder dystrophic epidermolysis bullosa (DEB), are linked to skin fragility and progressive inflammation-driven fibrosis that facilitates aggressive skin cancer. So far, these changes have been linked to mesenchymal alterations, the epithelial consequences of collagen VII loss remaining under-addressed. As epithelial dysfunction is a principal initiator of fibrosis, we performed a comprehensive transcriptome and proteome profiling of primary human keratinocytes from DEB and control subjects to generate global and detailed images of dysregulated epidermal molecular pathways linked to loss of collagen VII. These revealed downregulation of interaction partners of collagen VII on mRNA and protein level, but also increased abundance of S100 pro-inflammatory proteins in primary DEB keratinocytes. Increased TGF-ß signaling because of loss of collagen VII was associated with enhanced activity of lysosomal proteases in both keratinocytes and skin of collagen VII-deficient individuals. Thus, loss of a single structural protein, collagen VII, has extra- and intracellular consequences, resulting in inflammatory processes that enable tissue destabilization and promote keratinocyte-driven, progressive fibrosis.


Assuntos
Colágeno Tipo VII/genética , Queratinócitos/metabolismo , Lisossomos/metabolismo , Células Cultivadas , Colágeno Tipo VII/metabolismo , Homeostase , Humanos , Mutação , Proteoma , Transcriptoma
5.
Hum Mol Genet ; 26(3): 479-488, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28365758

RESUMO

The function and stability of collagens depend on the accurate triple helix formation of three distinct polypeptide chains. Disruption of this triple-helical structure can result in connective-tissue disorders. Triple helix formation is thought to depend on three-stranded coiled-coil oligomerization sites within non-collagenous domains. However, only little is known about the physiological relevance of these coiled-coil structures. Transmembrane collagen XVII, also known as 180 kDa bullous pemphigoid antigen provides mechanical stability through the anchorage of epithelial cells to the basement membrane. Mutations in the collagen XVII gene, COL17A1, cause junctional epidermolysis bullosa (JEB), characterized by chronic trauma-induced skin blistering. Here we exploited a novel naturally occurring COL17A1 mutation, leading to an in-frame lysine duplication within the coiled-coil structure of the juxtamembranous NC16A domain of collagen XVII, which resulted in a mild phenotype of JEB due to reduced membrane-anchored collagen XVII molecules. This mutation causes structural changes in the mutant molecule and interferes with its maturation. The destabilized coiled-coil structure of the mutant collagen XVII unmasks a furin cleavage site that results in excessive and non-physiological ectodomain shedding during its maturation. Furthermore, it decreases its triple-helical stability due to defective coiled-coil oligomerization, which makes it highly susceptible to proteolytic degradation. As a consequence of altered maturation and decreased stability of collagen XVII trimers, reduced collagen XVII is incorporated into the cell membrane, resulting in compromised dermal-epidermal adhesion. Taken together, using this genetic model, we provide the first proof that alteration of the coiled-coil structure destabilizes oligomerization and impairs physiological shedding of collagen XVII in vivo.


Assuntos
Autoantígenos/genética , Epidermólise Bolhosa Juncional/genética , Proteínas Mutantes/genética , Colágenos não Fibrilares/genética , Relação Estrutura-Atividade , Adolescente , Aminoácidos/genética , Autoantígenos/química , Autoantígenos/metabolismo , Vesícula/fisiopatologia , Epidermólise Bolhosa Juncional/metabolismo , Epidermólise Bolhosa Juncional/patologia , Feminino , Furina/genética , Humanos , Masculino , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Colágenos não Fibrilares/química , Colágenos não Fibrilares/metabolismo , Conformação Proteica em alfa-Hélice/genética , Multimerização Proteica , Estabilidade Proteica , Colágeno Tipo XVII
7.
Am J Hum Genet ; 99(6): 1395-1404, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889062

RESUMO

The genetic basis of epidermolysis bullosa, a group of genetic disorders characterized by the mechanically induced formation of skin blisters, is largely known, but a number of cases still remain genetically unsolved. Here, we used whole-exome and targeted sequencing to identify monoallelic mutations, c.1A>G and c.2T>C, in the translation initiation codon of the gene encoding kelch-like protein 24 (KLHL24) in 14 individuals with a distinct skin-fragility phenotype and skin cleavage within basal keratinocytes. Remarkably, mutation c.1A>G occurred de novo and was recurrent in families originating from different countries. The striking similarities of the clinical features of the affected individuals point to a unique and very specific pathomechanism. We showed that mutations in the translation initiation codon of KLHL24 lead to the usage of a downstream translation initiation site with the same reading frame and formation of a truncated polypeptide. The pathobiology was examined in keratinocytes and fibroblasts of the affected individuals and via expression of mutant KLHL24, and we found mutant KLHL24 to be associated with abnormalities of intermediate filaments in keratinocytes and fibroblasts. In particular, KLHL24 mutations were associated with irregular and fragmented keratin 14. Recombinant overexpression of normal KLHL24 promoted keratin 14 degradation, whereas mutant KLHL24 showed less activity than the normal molecule. These findings identify KLHL24 mutations as a cause of skin fragility and identify a role for KLHL24 in maintaining the balance between intermediate filament stability and degradation required for skin integrity.


Assuntos
Alelos , Códon de Iniciação/genética , Mutação , Proteínas Repressoras/genética , Anormalidades da Pele/genética , Pele/patologia , Adulto , Criança , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...